Вживання російської небезпечне

Чому ми так вважаємо
Перейти на українську
  • Файл

Василь

Копірайтер

Город проживания:
Ужгород
Готов работать:
Удаленно

Контактная информация

Соискатель указал телефон и эл. почту.

Фамилия, контакты и фото доступны только для зарегистрированных работодателей. Чтобы получить доступ к личным данным кандидатов, войдите как работодатель или зарегистрируйтесь.

Загруженный файл

Версия для быстрого просмотра

Это резюме размещено в виде файла. Эта версия для быстрого просмотра может быть хуже, чем оригинал резюме.

Dr. Shvalya Vasyl: (PI)
Date of birth: February 12th, 1990
Nationality: Ukrainian
Gender: Male
E-mail: [открыть контакты](см. выше в блоке «контактная информация»)
Research ID: Scopus – 56835736800, ORCiD - 0000-0002-1581-9970
URL for web site: https://cris.cobiss.net/ecris/si/sl/researcher/5054
https://scholar.google.com/citations?user=kH9rngkAAAAJ&hl=uk&oi=sra
https://www.researchgate.net/profile/Vasyl-Shvalya
Stats: h-index: 10 (scholar), Journal papers: 30+, Citations: 300+ (scholar), Invited talks: 10+
06/10/2017PhD in Physics (Material Science, Semiconductors and Insulators), PhD title “Influence of Isovalent Dopants on Critical Behavior and Dynamic Thermal Properties of Sn(Pb)2P2S(Se)6 Ferroelectric Crystals”
https://www.uzhnu.edu.ua/en/news/International-defense-of-PhD-thesis-took-place-at-UzhNU.htm
https://www.ehu.eus/photothermal/TesisVasyl
Double PhD degree, The University of the Basque Country (Bilbao, Spain), and Uzhgorod National University, (Uzhgorod, Ukraine)
Prof. dr. Yu. Vysochanskii and Prof. dr. Alberto Oleaga
03/06/2012Master degree in Micro- Nanoelectronics. Faculty of Physics, Uzhgorod National University (Uzhgorod, Ukraine)
01/06/2011Bachelor degree in Biomedical Electronics, Faculty of Physics, Uzhgorod National University (Uzhgorod, Ukraine)
• Current position
2020 – nowResearch Associate; Department F6/ Jožef Stefan Institute/ Ljubljana, Slovenia
• Previous positions
2018 – 2020Postdoc researcher; Department F6, Jožef Stefan Institute, Ljubljana, Slovenia
2018 – 2020Postdoc researcher; Faculty of Physics, Department of the physics of semiconductors, Uzhgorod National University (Uzhgorod, Ukraine)
• Pedagogical activity:
2018-2022PhD co-mentoring Aswathy Vasudevan
2022 - presentPhD co-mentoring Ibrahim Hameli
2023 – presentPhD co-mentoring Jelena Strbacns
• Institutional responsibilities
2022 – Jožef Stefan Institute Center of Excellence in Nanosciences -responsible for analytical nanospectroscopy (Raman/FTIR)
• Membership in scientific societies
2019- iPlasmaNano member
2021 - ECS member
2023 - Scientific Society Micro&Nano
2023 - Royal Society of Chemistry
• Collaborations
Uzhhorod National University, Ukraine (A.A. Grabar); University of Liverpool, UK (J.L. Walsh), Shanghai Jiao Tong University, China (X.X. Zhong), NCSR Demokritos, Greece (E. Gogolides), CSIRO in QUT, Australia (K. Ostrikov); Ben-Gurion University of the Negev, Israeli (. I. Abdulhalim); University of the Basque Country, Spain (A.Salazar); Air Force Research Laboratory, USA (Dean R. Evans); University of Minho, Portugal (A. Zille); University of Zagreb, Croatia (L. Ćurković), University of Ljubljana, Slovenia (D. Vella), National Institute of Chemistry, Slovenia (U.Novak), University of Porto, Portugal (B. Silva), National Aerospace University, Ukraine (O.Baranov).

• Non-financial awards:
2020Featured article in Applied Physics Reviews: https://doi.org/10.1063/5.0015246
2021Excellence in Science (Slovenian Research agency) “The most prominent research achievements” https://www.arrs.si/sl/dogodki/21/inc/Dan-ARRS-2021-odlicni1.pdf
2022Featured article in NANOletters: https://pubs.acs.org/doi/full/10.1021/acs.nanolett.2c02835
• Financial awards:
2012Academic Scholarshipsof the President of Ukraine (https://zakononline.com.ua/documents/show/31981___31981)
2014PhD scholarship from “Erasmus Mundus Action 2 LOT & ACTIVE” (attachment-1)

1Northage, N., Simon, S., Shvalya, V., Modic, M., Juergens, T., Eschborn, S., ... & Walsh, J. L. (2023). Efficient endoscope inner channel surface disinfection using a two-step atmospheric pressure plasma treatment. Applied Surface Science, 623, 156936. In this study, the antibiofilm potential of a two-step disinfection process using cold atmospheric pressure plasma and plasma-activated water is investigated. The combined approach was shown to achieve a 5.72 log reduction in clinically relevant mixed species biofilms in the narrow lumens of a typical endoscope.
2Shvalya, V., Vasudevan, A., Modic, M., Abutoama, M., Skubic, C., Nadižar, N., ... & Cvelbar, U. (2022). Bacterial DNA Recognition by SERS Active Plasma-Coupled Nanogold. Nano letters, 22(23), 9757-9765. Here we demonstrate that surface-enhanced Raman spectroscopy (SERS) can identify bacteria by their genomic DNA composition using nanogold aggregates synthesized by one-step plasma reduction of the ionic gold-containing vaporized precursor. The genomic composition was successfully validated by third generation sequencing using nanopore technology.
3Oberlintner, A., Shvalya, V., Vasudevan, A., Vengust, D., Likozar, B., Cvelbar, U., & Novak, U. (2022). Hydrophilic to hydrophobic: ultrafast conversion of cellulose nanofibrils by cold plasma fluorination. Applied Surface Science, 581, 152276. In this work, it was shown that fluorocarbon plasma treatment improves the hydrophobicity of cellulose surfaces. This was done using the example of nanofibril films treated with CF4 plasma to achieve a conversion from hydrophilic to hydrophobic in less than 10s. Saturation of the water contact angle (about 130o) was achieved after only 30s of treatment.
4Vasudevan, A., Shvalya, V., Košiček, M., Zavašnik, J., Jurov, A., Santhosh, N. M., ... & Cvelbar, U. (2022). From faceted nanoparticles to nanostructured thin film by plasma-jet redox reaction of ionic gold. Journal of Alloys and Compounds, 928, 167155. In this work, a plasma-vapour interaction was used for the simultaneous reduction and deposition of AuNPs from an inorganic precursor (HAuCl4). As surface analyses suggest, the input power of the plasma plays an important role in the reduction efficiency, while a decrease in argon gas flow rate leads to the formation of smaller particles, allowing the tailoring of SERS properties.
5M. Santhosh, N., Shvalya, V., Modic, M., Hojnik, N., Zavašnik, J., Olenik, J., ... & Cvelbar, U. (2021). Label‐free mycotoxin Raman identification by high‐performing plasmonic vertical carbon nanostructures. Small, 17(49), 2103677. Nanocarbon for SERS. This research shows that high performance plasmonic substrates (analytical amplification factor = 5 × 107) based on plasma grown vertical hollow carbon nanotubes can be used for instant detection of the most toxic mycotoxins. Due to the excellent sensitivity allowing operation at ppb concentrations, it was possible to collect vibrational fingerprints of aflatoxin B1, zearalenone, alternariol and fumonisin.
6Nemanič, V., Zavašnik, J., Shvalya, V., & Žumer, M. (2021). Hydrogen permeability of non-stoichiometric tungsten oxides. Journal of Nuclear Materials, 548, 152860. In this work, I have used Raman spectroscopy to study nanostructures from very different application areas. However, the structure I analysed inspired me to reuse the morphology for SERS application, more specifically for the detection and recognition of military substances.
7Shvalya, V., Filipič, G., Vengust, D., Zavašnik, J., Modic, M., Abdulhalim, I., & Cvelbar, U. (2020). Reusable Au/Pd-coated chestnut-like copper oxide SERS substrates with ultra-fast self-recovery. Applied Surface Science, 517, 146205. In this article, differently tailored nano/micro roughnesses provided excellent light trapping capabilities that resulted in significant improvement in SERS performance. It was found that a chestnut Cu2O substrate activated with an 80 nm thick Au/Pd alloy film exhibited an impressive 3.7-fold increase in Raman signal with respect to the granular structure and about twice the gain of a nanowire- enriched platform decorated in the same manner.
8Shvalya, V., Filipič, G., Zavašnik, J., Abdulhalim, I., & Cvelbar, U. (2020). Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Applied Physics Reviews, 7(3). New country – new challenges. This review discusses the major developments over the past decade in surface-enhanced Raman scattering (SERS) and nanoplasmonic materials for sensing applications, focusing on the development of sensors and their use for cancer diagnostics and therapeutic applications, monitoring of kinetic chemical reactions, detection of metal ions in aqueous environments, detection of explosives and hazardous materials, detection of pathogenic bacteria and viruses.
9Shvalya, V., Zavašnik, J., Nasretdinova, V., Uršič, H., Kovač, J., Grabar, A., ... & Cvelbar, U. (2020). Customization of Sn 2 P 2 S 6 ferroelectrics by post-growth solid-state diffusion doping. Journal of Materials Chemistry C, 8(29), 9975-9985. A nostalgic work in which we demonstrate for the first time the successful incorporation of metal dopants after synthesis at elevated temperature into a Sn2P2S6 host structure, known as the granddaddy of dichalcogenide ferroelectrics with the formula M2P2X6 (M = metal and X = chalcogen). Using Cu as an example, we show that the integration of dopant atoms into the bulk of an already grown crystal improve the structural, optical, electrical, and ferroelectric properties.
10A. Oleaga, A., Shvalya, V., Salazar, A., Stoika, I., & Vysochanskii, Y. M. (2017). In search of a tricritical Lifshitz point in Sn2P2 (S1-xSex) 6 doped with Pb, Ge: A critical behavior study. Journal of Alloys and Compounds, 694, 808-814. A study was carried out on the critical behavior of Sn2P2(S1-xSex)6 for x = 0.28 (Lifshitz point) doped independently with Pb and Ge to find a tricritical Lifshitz point. The evolution of the features of the experimental curves (temperature position, shape, thermal hysteresis) was compared with theoretical predictions related to both the stereoactivity of the metal cations in the studied samples and the Blume-Emery-Griffith model with random field effects.
1Zavašnik, J., Šestan, A., & Shvalya, V. (2021). Microscopic techniques for the characterisation of metal-based nanoparticles. In Comprehensive Analytical Chemistry (Vol. 93, pp. 241-284). Elsevier.
1Shvalya V., Modic, M., Walsh J., Cvelbar, U. (2023) Plasma-controlled nanogold for advanced optical sensorics. Submitted/under review
1iPlasmaNano-X: The international symposium on plasma nanoscience (Porec, Croatia)
https://iplasmanano2019.com
255th International Conference on Microelectronics, Devices and Materials (Bled, Slovenia)
http://www.midem-drustvo.si/conf2019/
3239th ECS Meeting with the 18th International Meeting on Chemical Sensors (IMCS) (Chicago, USA)
https://www.electrochem.org/239/
4The 9th International Conference on Plasma Medicine (ICPM9) (Utrecht, Netherland)
https://www.icpm9.eu/
5The 5th International Union of Materials Research Societies International Conference of Young Researchers on Advanced Materials (Fukuoko, Japan)
https://icyram2022.wixsite.com/official-site
6The iPlasmaNano-XI: The international symposium on plasma nanoscience (Sevilla, Spain)
https://iplasmanano2022.com/
7The OASIS8: International Conference & Exhibition on Optics & Electrooptics (Tel Aviv, Israeli)
https://ilphotonics.com/oasis-8-conference-exhibition/
8PHOTOPTICS 2023: 11th Conference on Photonics, Optics & Laser Technology (Lisbon, Portugal)
https://photoptics.scitevents.org/?y=2023
9The International Conference "Dynamics of Systems on the Nanoscale" (Prague, Czechia)
https://www.dyson-conference.org/
10244th ECS Electrochemical Society Meeting (Gothenburg, Sweden)
https://www.electrochem.org/244/
11Micro Nano 2023, 10th International Conference on Micro-Nanoelectronics, Nanotechnology & MEMS (Athens, Greece)
https://2023.micro-nano.gr/s

Похожие кандидаты

Все похожие кандидаты


Сравните свои требования и зарплату с вакансиями других компаний: