- Файл
Максим
Data engineer
- Вік:
- 27 років
- Місто:
- Київ
Контактна інформація
Шукач вказав телефон , ел. пошту та LinkedIn.
Прізвище, контакти та світлина доступні тільки для зареєстрованих роботодавців. Щоб отримати доступ до особистих даних кандидатів, увійдіть як роботодавець або зареєструйтеся.
Отримати контакти цього кандидата можна на сторінці https://www.work.ua/resumes/13392310/
Завантажений файл
Це резюме розміщено у вигляді файлу. Ця версія для швидкого перегляду може бути гіршою за оригінал резюме.
Ju n io r Data E n gin eer
D a ta Anal y s t with fi v e y e ar s in b anking ant i - f r a u d,
transitioning to J unior Data E ng ine e r .
D ev e l op e d hig h- p e r f or m ance S Q L q ue r ie s a n d da t a
a rchite ctur e s, op tim iz ing s e r v e r l oad and e ffic i e n c y .
D el iv e r e d p r oje cts l ike Me r chants Anal y tics b a c k e n d
a n d a g e ocod ing p ip e l ine , with e x p e r tise in E T L , da t a
[
P r actical AW S and A z ur e e x p e r ie nce , b u i ldi n g
[
maksym-haleta Str ong p r ob l e m - s ol v ing and anal y tical s k i lls ,
Kyiv, Ukraine co m m itte d to continuous im p r ov e m e nt.
EX P ER IE NCE
E P A M L a b s (July 2024 – P resen t)
Imp l e me n t ed ETL pipelines in Azu re D ata Factory, mas terin g d a t a
in t e g ra t i o n techniques.
Wo rk e d o n A W S projects, gain in g practical experien c e with Lambda , S3,
E C2 , a n d S tep F unctions.
Fa mi l i a ri z e d with Databricks for data en g in eerin g tas ks ( th eor e t i ca l
t ra i ni n g ).
St u d e n t EP A M Uni v er s i ty (A pril 2 0 2 4 – Ju ly 2 0 2 4 )
Ga i n e d fo undational knowledg e in data en g in eerin g , in clu din g E TL / E L T
t h e o ri e s a n d data warehousing con c epts ( In mon , Kimball, an d Data Va ul t ).
Imp l e me n t ed ETL processes wi th SQL Server In teg ration Services , app l yi ng
b e s t p ra c t i ces for data extraction , tran s formation , an d loadin g .
Da t a A n a l y s t / Sy s tem s a nd Processes S upport Anal yst
J S C S e n s e B ank (May 2019 – Ma rch 2 0 2 4 )
D e v e l o p e d and optim iz ed the Merch an ts An alytic s arc h itectu re, c re a t i ng
c o mp l e x T - S QL scripts for over 5 0 ag g reg ation s , leadin g to s erver l oa d
r ed uc t i o n a nd enhanced perfor man ce.
D e s i g ne d and im plem ented a g eoc odin g pipelin e to pars e te x t ua l
ad d re s s e s , cleanse data, and efficien tly in teract with Open StreetMap API ,
im p ro v i n g a ddress data accuracy.
T ra i n e d a fr aud detection m odel for th e ban kin g app, in teg ratin g predi ct i v e
an a l y t i c s i n to banking operation s .
M a na g e d a nd analyz ed frau d preven tion ru les , improvin g res pons e
stra t e g i e s and reducing fraudu len t activity.
A p p l i e d K a n ban m ethodologies to man ag e tas ks an d optimize workflow .
K EY P R O JE CT S & ACH IE V EMENTS
1. M e r c h a nts Ana ly ti cs D a ta b ase Back end
D e v e l o p ed high- efficiency s cripts for merc h an t-level tran s a ct i on
a g g re g a tions.
C re a t e d database objects: tables , in dexes , trig g ers , an d proc edu r e s t o
s up p o rt i nterface display an d real-time alerts .
I mp ro v e d S QL proficiency by optimizin g s erver performan ce a nd
ma na g i n g transactional cons is ten c y.
2. Ge oc odi ng Pi p eli ne f o r T ext ual Addresses
P re p a re d data for A P I reque s ts an d pars ed res u lts for databas e s tor a ge .
U t i l i z e d regular expression s to c lean s e an d s tan dardize ad d r e s s
c o mp o nents, enhancing the data in teg rity.
A d v a nc e d P ython skills throug h implemen tin g a robu s t E T L proces s .
EDU C ATI ON
T EC H N ICAL SKILLS S OF T S KI L L S
Prog ra mm i ng & D a ta Ana lysis: • Probl e m-S ol ving:
Py t h o n (A dvanced), T-SQL E fficien tly addres s in g
( Ad v a nc e d ) , S Q L (A dvanced), P a n das complex data c h allen ge s .
( Ad v a nc e d ) , N um P y (A dvanced) , • De cision- Mak ing:
Reg ul a r E xp ressions (Interm edi ate) In termediate ability to
Da t a En g i n e er i ng & E T L: make data-driven deci s i ons .
M i c ro s o ft S Q L S erver Integra tion • Communicat ion:
S e rv i c e s ( I nterm ediate), A z ure D ata Novice s kills in bu s in es s
Fa c t o ry ( N ovice), A W S (N ov ice) , corres pon den ce,
Data S t o r age & Transaction s pres en tin g , an d dialogue
( In t e rme d i a te) bu ildin g .
C l ou d P l a t f o r m s :
M i c ro s o ft A z ure (N ovice), A W S IAM, L A NG UAG ES
La mb d a , S 3 (N ovice)
F r a m e w or k s & Li b r a r i es : Flas k
• Ukrainian (native)
( In t e rme d i a te), S QLA lchemy
( In t e rme d i a te) • English (Upper- Intermediate)
Схожі кандидати
-
Data engineer
Київ, Дистанційно -
Data engineer
Київ -
Інженер з електроніки
25000 грн, Київ -
Математик
Київ -
Начальник відділу
Київ -
Junior Data Analyst (BI)
30000 грн, Київ, Дистанційно