Данило

NLP engineer

Розглядає посади: NLP engineer, Data scientist, Python-програміст, AI engineer, ML Engineer, Розробник штучного інтелекту, Спеціаліст з ШІ, Промпт-інженер, Python developer, Data engineer
Вид зайнятості: повна, неповна
Вік: 30 років
Місто проживання: Київ
Готовий працювати: Дистанційно, Київ
Розглядає посади:
NLP engineer, Data scientist, Python-програміст, AI engineer, ML Engineer, Розробник штучного інтелекту, Спеціаліст з ШІ, Промпт-інженер, Python developer, Data engineer
Вид зайнятості:
повна, неповна
Вік:
30 років
Місто проживання:
Київ
Готовий працювати:
Дистанційно, Київ

Контактна інформація

Шукач вказав телефон , ел. пошту та LinkedIn.

Прізвище, контакти та світлина доступні тільки для зареєстрованих роботодавців. Щоб отримати доступ до особистих даних кандидатів, увійдіть як роботодавець або зареєструйтеся.

Досвід роботи

AI engineer

з 09.2023 по 04.2025 (1 рік 8 місяців)
Askflow AI, Дистанційно (IT)

Developed all AI functionality and features for the Askflow AI product.

AI engineer

з 09.2023 по 03.2025 (1 рік 7 місяців)
Fourmeta Agency, Дистанційно (IT)

Designed LLM-based quiz-generation tool with API. Developed several interactive chatbots for instagram and other services.

System analyst

з 03.2021 по 10.2022 (1 рік 8 місяців)
Maxify, Дистанційно (IT)

- Developed tools for dynamic pricing simulations and KPIs evaluation.
- Designed new solutions for fixing the overprice problem and increasing plan completeness.
- Improved performance of Maxify real estate dynamic pricing product.
- Developed tool for automated real estate income plan correction based on sales amount.

Data scientist

з 02.2021 по 06.2022 (1 рік 5 місяців)
M4U, Київ (IT)

- Designed interior classifier for quality assessment based on photographs.
- Improved price calculation methods used in P/ARC(Mappy) product
- Developed prototype ASR system for sales managers performance assessments.

Освіта

Institute of Information Technologies and Systems of the National Academy of Sciences of Ukraine

Computer Science, Київ
Вища, з 2022 по 2026 (4 роки)

I’m currently studying for a PhD at Institute of Information Technologies and Systems of the National Academy of Sciences of Ukraine. Theme of the PhD thesis: “Automation of Cognitive Modeling of Solutions: A Meta-Heuristic Approach to Adaptive Generation and Validation of Iterative Prompt Architectures for Solving Non-Trivial Problems.”

Taras Shevchenko National University of Kyiv

Faculty of Computer Science and Cybernetics, Specialty: "artificial intelligence", Київ
Вища, з 2017 по 2019 (2 роки)

Theme of the master's thesis : “Generation of coherent text using recurrent neural networks”.

Kyiv National Economics University

Faculty of Information Systems and Technologies, Specialty: "economic cybernetics", Київ
Вища, з 2013 по 2017 (4 роки)

Theme of the thesis: "Application of fractal geometry in modeling of economic systems".

Знання і навички

  • Flutter
  • PyTest
  • Regular expressions
  • Data visualization
  • Робота з OCR-системою
  • Sales forecasting
  • NumPy
  • Pandas
  • Keras
  • OpenCV
  • JSON
  • Creation of chat bots
  • LaTeX
  • Prolog
  • C++
  • Flask
  • FastAPI
  • Web Scraping
  • Data preprocessing
  • Work with a large amount of information
  • AI prompting
  • Llm agents
  • LangChain
  • Rag
  • VS Code
  • MS Azure
  • AWS
  • Computer vision
  • Writing academic articles
  • Application of artificial intelligence
  • Knowledge of NLP techniques
  • Machine learning
  • PyTorch
  • Python
  • Docker
  • GitHub
  • Знання принципів ООП
  • SQL
  • HTML
  • Бажання вчитися і розвиватися
  • MS Excel
  • MS Power BI
  • MySQL
  • PostgreSQL
  • Здатність до навчання
  • TensorFlow
  • Zapier
  • MATLAB
  • Kubernetes
  • XGBoost

Знання мов

  • Англійська — вище середнього
  • Українська — вільно

Додаткова інформація

Accomplishments:
- Designed and implemented web scraping and data acquisition pipelines for structured and unstructured web data, including parsing, cleaning, and integration into ML workflows.
- Applied statistical analysis, clustering, dimensionality reduction, and time-series forecasting for analytical and decision-support tasks.
- Developed and evaluated rule-based algorithmic trading strategies, applying time-series analysis, statistical indicators, and automated decision logic.
- Developed end-to-end computer vision pipelines, from dataset collection and annotation to OCR-based document analysis and fine-tuning of image classification models.
- Implemented ASR and speech-processing pipelines for speech-to-text and audio data analysis (Vosk, Kaldi).
- Worked with Knowledge Graphs, ER modeling, and graph algorithms, including entity resolution (Senzing, Aleph) and graph-based reasoning.
- Conducted scientific research in NLP and LLM-driven taxonomy construction, including rank-based and iterative prompt frameworks.
- Applied prompt engineering and meta-prompting techniques to improve reliability, controllability, and evaluation of LLM-driven systems.
- Built RAG-based e-commerce chatbots operating on product catalogs and merchant data via vector databases and structured context injection.
- Designed and implemented LLM-powered quiz generation systems at Askflow AI, enabling dynamic, product-aware quizzes using RAG and prompt orchestration.
- Designed and maintained ML experimentation and deployment pipelines, supporting reproducible training, evaluation, and deployment (Docker, MLflow, ZenML).
- Used no-code automation and AI-assisted development tools to rapidly prototype, integrate, and iterate on AI systems and workflows (n8n, Zapier, Make, Cursor, Warp).
- Partnered with product and engineering teams to design and deliver practical AI solutions from abstract requirements.
- Has the capability to rapidly acquire and apply expertise in new ML and AI problem domains.

Desired roles:
NLP Engineer / LLM Engineer / Applied Research Engineer / Computer Scientist

What I am looking for:
- Work on meaningful, non-trivial problems where AI systems deliver real value rather than superficial automation.
- Projects involving LLMs, Knowledge Graphs, RAG systems, GNNs, or hybrid symbolic–neural approaches.
- Opportunities to grow simultaneously as a researcher and an engineer, bridging theory, experimentation, and production systems.
- Tasks that emphasize thinking, modeling, and system design, rather than prompt wrapping or API glue code.
- Environments that value engineering rigor, interpretability, and long-term system quality.
- Collaboration with strong technical teams, research groups, or product teams building intelligent systems at scale.

Preferred focus areas:
- Information Extraction, NER, Question Answering, Summarization
- LLM-based agents, reasoning, and tool-augmented systems
- Knowledge Graphs, structured representations, explainable AI
- Multi-modal NLP and Vision–Language systems

Інші резюме цього кандидата

Схожі кандидати

Усі схожі кандидати