• Файл

Анатолій

Python-програміст

Вік: 26 років
Місто проживання: Рівне
Готовий працювати: Дистанційно
Вік:
26 років
Місто проживання:
Рівне
Готовий працювати:
Дистанційно

Контактна інформація

Шукач вказав телефон .

Прізвище, контакти та світлина доступні тільки для зареєстрованих роботодавців. Щоб отримати доступ до особистих даних кандидатів, увійдіть як роботодавець або зареєструйтеся.

Завантажений файл

Версія для швидкого перегляду

Це резюме розміщено у вигляді файлу. Ця версія для швидкого перегляду може бути гіршою за оригінал резюме.

Yatsuk Anatolii
[відкрити контакти](див. вище в блоці «контактна інформація») · [відкрити контакти](див. вище в блоці «контактна інформація»)

SKILLS

Python, C/C++
Applied machine learning in Python using numpy, pandas, PyTorch, keras, scikit-learn, Tensorflow
Data mining
Concurrent programming principles, C++ STL concurrency API
Kafka, Spark, Spark Streaming, Cassandra
Cybersecurity basics
Algorithms and data structures
Languages: Ukrainian – native, Russian – fluent, English – upper intermediate

EXPERIENCE

GlobalLogic, client: Data integration platform for ETL / ELT data 2023 - 2026
pipelines from APIs
At Airbyte, I worked on developing and improving ETL/ELT data connectors to ensure efficient data
replication from various sources to destinations. My role involved designing, implementing, and optimizing
connectors for APIs, databases, and applications.
Key Responsibilities:
- Develop and maintain data connectors using Python and Docker.
- Enhance features, usability, and performance of data connectors.
- Collaborate with internal teams to shape the future of Airbyte’s tooling and platform.
- Engage with the open-source community via GitHub and Slack.
Technologies: Python, Docker, AWS

GlobalLogic, client: multinational company which manufactures 2020 - 2023
escalators, moving walkways, and elevators worldwide
I was responsible for designing and developing software for a smart communication gateway between
controllers and the Cloud. This gateway facilitated the efficient configuration of controllers, collection of
statistics, and implementation of an emergency phone system via a digital connection for voice and data.
Working in a dynamic and challenging environment, I contributed to the development of cutting-edge
solutions for the elevator and escalator industry.
Key Responsibilities:
Collaborated with cross-functional teams to define and refine requirements for the communication
gateway software.
Utilized various programming languages and tools to design and develop the software, ensuring high
quality and reliability.
Conducted thorough testing and debugging to ensure the software met stringent standards.
Contributed to the development of documentation and training materials for user-friendly
implementation.
Maintained version control, participated in code reviews, and followed best practices for software
development.
Provided timely technical support to colleagues.
Stayed updated with emerging technologies and industry trends to drive continuous improvement of the
communication gateway and other products.
Technologies: Python, MQTT, Jenkins, systemd, Bash, C, serial, D-Bus
CropSaver 2019 - 2020
High-precision drone imagery analysis for agriculture using image segmentation, deep learning, traditional
computer vision.
Key Responsibilities
Developed and implemented data pipelines to preprocess input data and analyze results using Python
and data analysis techniques.
Implemented neural networks and traditional computer vision techniques for image segmentation and
analysis of data.
Designed and developed algorithms for feature extraction and pattern recognition, contributing to the
optimization of data analysis techniques for improved accuracy and reliability.
Technologies: Python libraries: pytorch, opencv

Eleks 2019
Correction of errors in medical texts.
Key Responsibilities
Developed and implemented an algorithm for correcting mistakes in scanned medical texts using
Word2Vec and recurrent neural networks (RNNs) in Python, utilizing the NLTK and Keras libraries.
Conducted testing and validation of the algorithm to ensure high accuracy and reliability of the results.
Technologies: Python libraries: keras, nltk

Branify 2018 - 2019
Real estate recommendation system
Key Responsibilities:
Conducted data mining to create a comprehensive dataset related to the real estate industry for later
analysis.
Employed advanced data analysis techniques, including machine learning algorithms and statistical
modelling, to uncover valuable insights and trends within the real estate data.
Technologies: Python, SQL, HTML

EDUCATION ACHIEVEMENTS

Bachelor's 2017 - 2020 13th place in the Western Ukraine ACM ICPC 2018.
Computer Science at Ukrainian Catholic University 6th place in the Western Ukraine ACM ICPC 2017.
Participant in the National Math Competition in 2017.
Prize places at the regional Competition on
Full secondary 2013 - 2017 programming in 2017 and 2016.
Lviv Physics and Mathematics Lyceum Received the third diploma of the National Math
Competition in 2015 and 2014.

PROJECTS

Report Builder 2024
Developed a script for visualizing mineral analysis data, which supports creating various types of reports and
adjusting visualization parameters.
Smart Statistics Collection System 2023
Collected and prepared data for machine learning, then trained and tested a neural network for image
processing. Developed a server using WebSockets to store and manage the results,.

Parallel Library of Artificial Neural Networks in C++ 2019
Developed a parallel data processing library with a Keras-like API for building and training artificial neural
networks. This project spanned 2 months and involved collaboration with a team of 4, leveraging the
capabilities of C++ STL.

Iterative Singular Value Decomposition (SVD) for Image Compression 2019
Implemented a singular value decomposition (SVD) algorithm in Python and authored a research paper on its
application for image compression. The project lasted 2 months and was completed with a team of 3 using
Python and LaTeX.

Food Recognition and Recipe Recommendation App 2018
Created an app for food image recognition and automatic recipe recommendations. The project involved
using neural networks and Python libraries (keras, scikit-learn) for image processing, along with Flask for
developing the web interface. It was completed over 2 months with a team of 2.

Схожі кандидати

Усі схожі кандидати

Кандидати у категорії


Порівняйте свої вимоги та зарплату з вакансіями інших підприємств: